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SUMMARY

A stralin—energy theory similar to one developed earlier at PIBAL
(Polytechnic Institute of Brooklyn Aeronautical Laboratories) was
established for the calculation of the buckling load in pure bending
of reinforced monocoque cylinders which have a symmetric cutout on the
compression side and buckle according to general—instability patterns.
The dlfference between the present and the earlier theories is the use
of the axlal wave length as an additional parameter whose value was
determined from a minimum condition. The theory was applied to four
cylinders which were tested earlier at PIBAL. Fair agreement was found
between theory and the results of the experiments.

INTRODUCTION

Reinforced monocoque cylinders are subject to faillure by a .
similtaneous buckling of frames, stringers, and sheet covering. This
type of failure is known as general instability. The problem of the
general instability of reinforced circular cylinders subjected to pure
bending has been investigated in some detall by various authors (refer—
ences 1 to 13). These papers have dealt with complete cylinders,
cylinders having symmstric cutouts on the compression side, and
cylinders having side cutouts.

Reference 12 presents a strain—energy theory and the results of
calculations for the buckling load of cylinders having a short
symmetric cutout on the compression side. In the theory it was assumed
that the general—instabillity bulge had the same wave length as the
cutout.

In this paper the general—instability buckling load of cylinders
having long symmetric cutouts on the compression side is calculated by
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strain—energy methods. The axial wave length of the bulge is used as a
paramester whose magnitude is found from the requirement that the buck—
ling load be a minimum. Thus 1t is possible to determine whether the
axial wave length 1s the same as the length of the cutout.

Test results showed that for some cylinders the bulge appeared to
be antisymmetric with respect to the vertical plane of symmetry of the
cylinder perpendicular to the axis. Therefore the calculations were
carried out for the two different assumptions of deflected shape at
buckling, one longitudinally symmetric, the other antisymmetric.

In both assumptions for the shape of the bulge, the displacements
at buckling were represented by the first seven terms of a Fouriler
series in the circumferential direction and by a few terms of a
trigonometric series in the axial direction. In the case of longltu—
dinal symmetry, the trigonometric series in x consisted of sine power
terms and contained a parameter which had to be determined from the
minimm buckling load condition. For longlitudinal antisymmetry the
series was a Fourler sine series in x which also contained a parameter.
Boundary conditions were used to determine four of the seven coeffi—
cients of the Fourler series In ¢ for the clrcumferential variation
of the shape while one remained undetermined as in all buckling problems.
The remaining two coefficlients as well as the clrcumferential wave
length were calculated from the minimum buckling ' load requirement.

The strain energles considered were those due to bending of the
rings in thelr own plane, radial and tangential bending as well as
torsion of the stringers, and shear in the sheet. The extensional
strain energy of the sheet was accounted for by adding an effective
width of sheet to the rings and stringers. The external work was
calculated on the assumption of a linear force distribution in the
stringers, which is in better agreement with test results (reference 9)
than a linear stress or strain distribution.

The buckling load was calculated from the requirement that the
strain energy corresponding to the transition from the unbuckled into
the buckled shape be equal to the work done by the applied loads. The
minimum value of the buckling load was found by assuming the circum—
ferential wave length equal to some integral number of stringer fields,
the axial wave length equal to soms integral number of ring fields, and
a numerical value for the parameter in the axial variation of the shape.
The values of the two undetermined Fourler coefficients were calculated
so as to make the buckling load a minimum, and with these two coeffi—
cients fixed the value of the axial parameter was calculated in a
similar menner. The process was repeated until the three parameters
reached steady values and the buckling load became a minimum.  This
value of the buckling load was compared with values obtained from other
assumptions of axial and circumferential wave lengths and the lowest
load was taken as the absolute minimum buckling load of the cylinder.
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a.,ao,al,ae,aB

A,Agpp

b,by,bp,by

Etan
Ered

SYMBOLS

Fourier coefficients

cross—sectional area of stringer plus effective width
of sheet

Fourler coefficients

parameter

geometric coefficlent ip torsional rigidity GC
width'of panel mesasured along circumference
paramster

Young's modulus

tangent modulus
reduced modulus -

shear modulus

shear modulus of sheet covering at zero compressive
load

effective shear modulus

width of stringer
index indicating position along circumference

moment of inertia of riné section and its effective
width of sheet for bending in its own plane

moment of inertia of stringer section and its effective
width of sheet for bending in the radlal direction
(about a tangential axis)
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moment of Inertia of stringer sectlon and its effective ‘
width of sheet for bending in 'bhe tangential direction
(about a radial axis)

index indicating position along axial diréction

length of bulge in axial direction '

distance between adjacent rings

number of rings involved in bulge
number of ring fields involved in bulge

applied bending moment; function of n, a, and b,
appearing in strain energy of bending in rings

applied bending moment at buckling

parameter defining length of bulge in circumferential
directlion

polynomial functions of & and D

force in one of the stringers at edge of cutout at
buckling

force in ith stringer

function of x and ¢ or e appearing in shear strain
energy

radius of cylinder

function of n, 9, a, and b appearing in shear
strain energy

number of stringers involved in one—half of bulge

total number of stringers in cylinder

thickness of sheet covering

strain energy

strain energy stored in rings because of bending of o
rings in their own plane ; o
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Ugtr strain energy stored in stringers because of bending
r about a tangential axis
Usty straln energy stored in stringers because of bending
t about a radlal axis

Uy, ' stra.in energy stored in stringers because of torsion

Ush ‘ strain energy stored in sheet covering because of shear

2w effective width of sheet

W rotation of tangent to ring

W radial displacement of a point on a ring or a stringer

Wy tangentlal displacement of a point on a ring or a
stringer

W work done by extermal forces

X coordinate msasuring distance along axis of cylinder

2a cutout angle

5 O s g " coefficients used in calculation of shear strain in a
panel due to rotations and displacements of its
corners

V4 shear stralin

5 distance of neutral axis from horizonta.l diameter of
cylinder

€ normal strain in a stringer

€or buckling strain of a panel of sheet covering

P angular coordinate measuring circumferential distance
from edge of cutout

Q’)r' function of n, ¢, a, and b appearing in expression
for wp

<I>r function of n, ¢, &, and b appearing In expression
for w.

<D_b function of n, ¢, &, and b appearing In expression

for Wi
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THE DEFLECTED SHAPE

The shape of the bulge at buckling is determined mainly by the
radial deflections. It was observed In experiments comducted on
cylinders designed to fall by general instability that, while most of
the cylinders falled in a longitudinelly symmetric bulge, there were
some specimens which falled in what appeared to be a longltudinally
antisymmetric bulge pattern (reference 14). For that reason, these
two types of deflected shape were considered. Typical deflection
patterns of stringers and a ring are shown in figure 1.

SYMMETRIC DEFLECTION PATTERN

The expression cliosen to represent the radlal deflections that
are symmetric longitudinally is:

W, = [sina(nx/i.) +c sin6(1cx/L):|d>r (1)
where
<Dr=(ao+alcoana+a2cosamp+a3 cos 3np +
by sin np + bp sin 209 + by sin3mp) (1a)
provided
0S¢=nx/n
0Sx =L
Also,
w, =0

for ¢ > n/un andfor x < 0, x> L. The notation and sign convention
are shown in figure 2. -

The deformations of the rings were assumed to be Inextensional.
The condition for inextensional deformations is:

Wr = ‘aWt/aCP - (2)
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Therefore the tangentlal deformations are glven by:

Wy = [sing(:rcx/L) +c sin6(rcx/L)]<bt (3)

where

o = —(1/n) [aoq) + a1 sin np + (32/2) sin 2ngp + (a3/3) sin 3np —

by cos np — (bp/2) cos 2np - (b3/3) cos 3ncp] (3a)
Provided )
0<9< n/n
0<x<L
Also,
wg =0

when ¢ > n/n and/or x < 0, x > L. The arbitrary function of x
which would normally appear in equation (3) as a result of the inte—
gration of equation (2) is zero if the displacements are symmetric
ebout a vertlcal diamester.

If it is required that there be a smooth transition between the
bulge and the undistorted part of the cylinder at ¢ = n/n, then:

(1) The tangential displacements must vanish:
wy =0 (ka)
when @ = n/n for all values of x
(2) The radial displacements must vanish:
w, =0 (4b)
when ¢ = n/n for all values of x
(3) There must be no sudden change in the direction of the tangent:

awr/aq) =0 (ke)

when ¢ = n/n for all values of x
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(4) There must be no sudden change in the curvature:
P[22 = 0 (4d)

when @ = n/n for all values of x. Also, in order to have a smooth
transition betweer the bulge and the undistorted part of the cylinder
at x =0 andfor x =L:
(5) The tangential displacements must vanish:
wg =0 (ko)
when x =0 or L for all values of @
(6) The radial displacemsnts mist vanish:
Wy = 0 (42)
Vhén x=0 or L for all values of @
(7) There must be no sudden chenge in the direction of the tangent:
B [ox = 0 (kg)

when x = 0-or I for all values of ¢. Conditions (5), (6), and (7)
are antomatically satisfied by the expressions in the assumed deflected
shape for all values cf the paramster c¢. The remalning four conditions
establish four relationshlps between the Fourler coefficlents and make
it possible to determine any four of the coefficlents In terms of the
remalning three. If a5, a4, and bl are retained as the basic param—
eters, and the notatlon

al/a.o = a

(5)
b1 fao =D

is used, then equations (la) and (3a) become:

Wy = ao[sina(nx/L) +c sin6(nx/L)][l + a cos np + (L.6a — 1.8) cos 2np +
(0.6a — 0.8) cos 3op + b sin np + (3.2b + 3.6x) sin 2ng +

(1.8b +2.LQ:) sin 3np | (6)
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wy = ~(ap/n)[sin?(mx/L) + ¢ sin6(nx/L)][ﬁm + a sin np +
(0.8a — 0.9) sin 2np + (0.2a — 0.2666 . . .) sin 3np —

b cos np — (1.6b + 1.8x) cos 2np — (0.6b + O.8n)bcos 3n¢] (7)

CALCULATION OF STRAIN ENERGY FOR THE
SYMMETRIC DEFLECTED SHAPE

Strain Energy Stored in Rings

The strain energy stored In ane—half of any one ring is:

2/n . |
U= (EIr/2r3)/; [ + (azwr/aqf)]g a (8)

If the value of w, 1s substituted from equation (6) and the strain

energy is summed up over all the rings, the following expression is
obtained: '

U = (1/2) 3; (mr, fe3) [ s122(xa /) +

/0

c sin6(ﬂJfLi]2 [ér2 + <é2;r/a¢é>]2>d§ (9) -
0

where m 1is the total number of rings included in- the wave length I.
The integration ylelds a result In closed form. If all the rings have

the sams bending rigidity I¥I., the total strain energy for one—half
of the cylinder is: .

U, = (%02/2r3>(EIrM) E?i [%ine(nJ/L) +c sin6(nj/14]2 (10)

3=1
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where
nM = [rr + 10.053096(1 - 9n2) + 206.01005(1 - una)z +
90.303387(2 - 902)° - 18.095573(1 — 4e2) (1 — 92) | + -
a[— 9.0477868(1 — 1n2)? — 1.5079645(1 — 9n2)° +
30.159289(1 - n2)<l - h,n?) + 18.095573(1 - lme)(l - 9n2)] +
b [4(1 —n2) s 2.4(1 - 9n2) + 113.69784(1 — 12 4
h2.63669o(1 —om2)? + a.u(l - n2)(1 - m2) —
3.68(1 — 1m2)(1 - 9n2>] + aa[(n/2)<l.— n2)2 4 4.0212386(1 — 42 +
0.5654867(1 - 9n2)2] + b2 [(::/2)(1 - n2)2 + 16.08&9’5&(1 - lmz)e +
5.08938(1 — 9n2)2] + &b [6.&(1‘ ~u2)(1 - k) +
3.&(1 - lmz)(l - 9n2)] (11)

It is possible but cumbersome to sﬁm.up in closed form the trigonometric
functions describing the deflected shape in the axial direction as
glven in equation (10). It was found more convenient to carry out the

summation numerically.
Strain Energy Stored in Stringers

The strain energy stored in the stringers because of bending in
the radial directlion is:

L
Ugtr, = (1/2) > EIstrrf (52%/3I2)2 dx (12)
i 0

where the summation is extended over ail the stringers involved in the
bulge in one—half the cylinder. Substitution of the value of w,. from

equation (6) into equation (12) and integration gives:
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L
Ustr, = (1/2) Ei: Elgtr, (0r)2(x/t)* | [2 cos®(mx/L) — 2 sind(mx/r) +
0

30c sinu(mx/L) cos?(mx /L) ~ 6c sin6(nx/1)]2 di

Vs, = (Ku/lj) [1 + (15/8)c + (441/128)o2] % Elgy (0r)2 (13)

The strain energy stored in the stringers because of bending in
the tangentlal direction is:

y ‘
Ugtr, = (1/2) Zi Elgtr, (62wt/ax2)2 dx (14)
O .

where the summation is extended over all the stringers involved in the
bulge in one~half of the cylinder. With the aid of equation (7) this
strain energy becomss:

Ugtry, = (nh/L3)[1 + (15/8)c + (441/128)02] E;: EIStrt(¢t)2 (15)

The strain energy stored in the stringers because of torsion is:

L - .
U = (1/2) g GC/ (1/r)2(a2wr/axacp)2 dx (16)
O .

and again the summation is extended over all the stringers involved in
the bulge in one—half of the cylinder. In this equation (l/r)(BQWr/axEqQ
is the unit angle of twist for the stringers. In the expression for the
Saint Venant torsional rigidity

¢ = 0.1t (16a)

since the test specimens were provided with square section stringers of
edge length h. Differentiation gives:

Py [3xdp = (3/2x)[s10% (s /L) + o s108(sex/r) o, (17)
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where

*

0. = aon[— a sin np — (3.2a — 3.6)sin 2np — (1.8a — 2.4)sin 3np +

b cos np + (6.4b + T.2n)cos 2np + (5.4b + 7.2n);os 30p]  (17a)
This gives for the strain energy of torsion:
= (e[ 1) + (15/32)e + (189/512)e2] I (o:')%  (28)

where the sumation is over one-half the cylinder, as before. Since the
variation of the torsional rigidity caused by the different amounts of
effective width of sheet is small when calculated according to the
Saint Venant theory, it was considered permissible to assume GC a
constant.

The values of @, Qt’ and <I>r' vary from stringer to stringer.
Mso Igtyy, and Igyy, very around the circumference because the

effective width to be added to each stringer changes. Therefore the
summations indicated in equations (13), (15), and (18) had to be
evaluated numerically for each cylinder investigated.

Strain Energy of Shear Stored in Sheet

The shear straln emergy per unit volume was taken as one—half the
average effective shear modulus multiplied by the square of the average
‘shear strain ¢y for each panel of sheet. The average shear strain -y
was calculated from the relative displacements of the corners of the
panel, as shown in figure 3. Then the total straln energy of shear
stored in the sheet 1s:

Ugn = (1/2) 2_ 7°G o 0y ta (19)

where Intd d1s the volume of one panel and the summation extends over

all the panels involved in the bulge In one~half the cylinder. The'
effective shear modulus G off depends on the geometric and mechanlcal

properties of and the average normal strain in the panel. Its value was
teken from the empirical curves established earlier at PIBAL and
presented in figure 24 of reference 15. .
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The average angle of shear 7y was calculated from the equation:

7= <%/L1><W1‘1,J T,y T My, T Wi‘i+1,,1+1> "
(l“tl/L 1><wt1,3 T,y T TR g1 T Thag, J+l) *

(|olorm 1)<Wn1,,j T, e, e T Mg, ,j+l> (20

where the 'Subscript 1 refers to the clrcumferential locatlion, and the
subscript J, to the axial location of the corners of the panel.

.The rotation wp of the tangent of the ring is given by the
relation:

L v = (/) (i R0) = (1/r)0, o (en)

In reference 16 the values of the numerical factors a, @y, and o,
were determined. -

a,. = 4/10r = 2x/108
a = —(1/2)[1 —‘0.01666 . . . (d/r)2]> (22)
a, = —(r/d)(0.5 + ay) ‘ ]
Substitutions yield:
m s5—1
Usn = ($900/221) 2 & 2 (Geff/Gﬂo)-iRi (23)

where Q is a function of x only, and R, a function of ¢ only,
given by the relations:

Q = ({sine[:r,j/(m + l)] +c sin6[:r,j/(m + 1)]}-— {sj:n2[:r(,j +1)/(m + 1)] +

2
c sin6[n(J +1)/(m + l)]}) (2k)

 ———— i —————— e — ~ - =
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o a°2[ar(¢r1 T ey ) (o ](0n, * by, )

‘ (I“nl a/ r)((bri' * ¢r1+1’)]2 (25)

It is possible to get a result In closed form for the summations Q
and R but for convenlence the summation was performed numerlcally.

WORK DONE BY EXTERNAL FORCES -~

It was observed in the experliments described in reference 9 that
the stress distribution was not linear imn the cutout portion of the
cylinder, although the deviations from linearity were not large as a
rule. A good approximation to the experimental curves was obtained by
assuming a linear force distribution, which is not equivalent to a
linear stress distribution because of the varying amounts of effective
width of sheet added to the stringer sections. A comparison of the
strain distribution calculated on the assumption of linear force distri-—
bution with the experimental strains is given in figure 4 of reference 12.
The expression used for the calculation of the force acting on the 1th
stringer 1s:

Py = P, [8/r + cos (a + 2ni/5)]/(8/r + cos ) (26)

where Pcr is the compiessive force acting upon the stringer at the

edge of the cutout, and ® _is the distance of the neutral axis from the
horizontael diamster of the cylinder.

Equal and opposite forces are assumed to be acting at the x =0
and x =1 ends of each stringer. The distance between the points of
application of these forces shortens at buckling. The work done by the
forces 1s equal to the summation of the forces times the shortening of
all the strihgers involved in the bulge in one-half the cylinder:

L .
W= (1/2)) Py ’[(awr/ax)z + (Bwt/ax)z]dx 27)
i
0] .
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-

Substitutlons and integration give:

W

(R[4 + (5/32)e + (189/512)0° [T 240, + 0,?)

W

G2/ (1/m) + (15/32)c +
(189/512)02]:901';(1’1/}’01') <¢r2 + ¢t2> (28)

The summation in the right—hand member of equation (28) was carried out
numerically.

ANTTSYMMETRIC DEFLECTION PATTERN

The expression chosen to represent the radiasl deflections that are
antisymmetric longitudinally is:

Wy, = {sin (x/L) + e sin (4mx/L) —
[(1/3) + (29/3)] sin (610{/1.)}4{.[. ) (29)
‘for
- 0Lop=< n/n

0 xZ<1L

where ®, 1s glven by equation (12). Also,

for @ >n/n andfor x< 0, x >L. The expression for the tangential
deflections, again on the assumption of inextensional deformations, can
be obtained from equations (2) and (29) and is given by

L ={sin~(2n:x/L) + e sin (bmx/L) —
[(1/3) + (20/3)] stn (6xx/s) foy (30)
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for
0<9< n/n

0Lx<1L

vwhere ¢, 1s glven by equation (3a). Also,
W.t =0

for ¢ > n/n andfor x< 0, x> L. These expressions for w, and w,

mist satisfy the boundary conditions at ® = n/n glven in equations (ka)
through (kg).

It can be shown that the expressions fér wy &and wy gilven by

equations (29) and (30) satisfy the given boundary conditions for all
values of the longitudinal paramster e, as well as the parameters a
and b. In addition, it can be verified that equations (29) and (30)
satisfy the requirement for antisymmetry in the axial direction, namely,

) | Fox) (31)

for any given value of .

CALCULATION OF STRATN ENERGY FOR THE ANTISYMMETRIC
DEFLECTED SHAPE
The strain energles are derived in the same way as those for the -
symmetric deflected shape. They are listed below with reference to the
equations from which they are derived.
Strain Energy Stored In Rings

From- equations (8) and (29) the straln energy of bending at the
rings involved in the bulge in one-half the cylinder is:.

O = (ao/2r3)Er,u - {otn (exy/1) + o stn (uxsfr) - |
[a/3) + (eo/9)] sim (Gxa/]2 (32)

where M is given in equation (11). The summation 1s taken over the
rings involved in the bulge and was evaluated numerically.



NACA TN 1963 . 17

Strain Fnergy Stored in Stringers

From equations (12) and (29) the strain energy due to radial
bending of the stringers is given by :

= (nl"/L3)()+O + 1l4he + 20892)ZEIS& (‘Dr)e (33)

From equations (llL) and (30) the strain energy due to tangential
bending of the stringers is

Uty = (+/3)(h0 + Tiko + 20892)§E18trt(4pt)2 (34)

Equations (16) and (29) give for the strain energy due to torsion
of the stringers:

= (/1)(2 + ke + 862)(cc/r2) ;@;)2 (35)

where C 1s glven by equation (16a). The summations for all stringer
strain energles were evaluated numerically. .

Straln Energy of Shear Stored in Sheet

From equations (19), (21), (29), and (30), the strain energy of
shear in the sheet 1s:

m g1 '
Ugp = (4860 /2L) Z Qs > (Gore/Go)iRy ~ (36)
3=0 ° 1=0 -

where Q 1s given by
Q= ({sin [223/(m + 1)] + o sin [4ng/(m + 1)] -
[(1/3) + (2¢/3)] sin [6n3/(m + 1)]}— {sin [2:1:(3 +1)/(m+1)] +
e sin [bn(3 + 1)/(m + 1)] - [(1/3) +
(2¢/3)] sin [6x(3 +: 1)/(m + 1)]})2

and R 1s given by equation (25). The summations ZQ and. ZR were
evaluated numerically.

e e e e e e e e e p—— e e
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WORK. DONE BY EXTERNAL FORCES

From equations (27), (29), and (30) the work done by the external
forces is:

= (x2/L)Pgp(2 + ko + 8¥)§(Piﬁcr)(¢r2 +0,2) (37)

CALCULATION OF BUCKLING LOAD
The buckling condition is
Up + Ugtye, + Ugtpy, + Ug + Ugp = W (38)

where the values of the strain energles and the work must be taken from
equations (10), (13), (15), (18), (23), and (28) for the longitudinally
symmetric buckling shape, or from equations (32), (33), (34), (35), (36),
and (37) for the longitudinally antisymmetric buckling shape.

Equation (38) was solved for P,,. contained in W in the following

way.

Integral numbers of s and (m + 1) were chosen for the number
of stringer and ring fields included in the bulge. For these values
the ©2 s M, end R functions reduced to gquadratic expressions in a
and b. Next P, was assumed. This permitted the calculation of the
effective widths of sheet acting with the stringers, the moments of
inertia of the stringers, and the values of the effective shear modulus
in the sheet panels.

Finally, a trial value was chosen for the parameter c¢ (for the
symmetric deflected shape) or e (for the antisymmetric deflected
shape) in the expressions for the.longitudinal variation of the
buckled shape. All necessary summations were then carried out. Substi—
tution of all the results in equation (38) made it possible to obtain a
solution for P., in the form:

Pcr = Pl(a:b)/PQ(a:b) (39)

where py; and Do are quadratic expressions in the parameters a
and  b. Minimizing this expression for Pcr with respect to a and b

is equivalent to setting
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P, = P;(2,0)/py(a,) = (apl/aa)/(apg/aé) = (9p1/3b) /(3p2 /3b) (40)

where the partial differential coefficients of P; and p, are linear

functions of a and b. ZEguatlons (40) give three relations
between P,., &, and b, which may be solved by a trial-and—error

procedure. With the aid of an assumed value for P.n, &2 and b were
calculated from the linear equations. These values of & and b were
then substituted into the original quadratic expressions in equa—

tion (39), yielding a calculated value for P,n.. This procedure was
repeated with new assumptions for P.,. until the value calculated was
reasonably close to the one assumed. These values of a and b were
then substituted in the original expressions for the strain energies,
thus reducing the ‘Dz, M, and R functions to quadratic expressions
in ¢ or e, depending on which type of deflected shape was undsr
conslderation. The necessary summations were carried out again, and )
substitution of the results in equation (38) gave a solution for P,
in the form ‘

Py = B5(0)/py(c) (k1a)
or

Por = P5(e) /pgle) (41b)
vhere p and 7P are quadratic expressions in the parameter c,
and p5 3and Pg are quadratic expressions in the parameter e.

Minimizing this expression for Por Wwith respect to ¢ or e 1is
equivalent to setting

Pop = 25e) /ou(c)

(3p3/80)/(3pu/ac) (k2a)

P.p = P5(e)/pg(e) = (3p5 Be) /(3pg f3e) (42pb)

vhere the partial differential coefficients of p3 and p, are linear

functions of ¢, and the partial differential coefficients of Ps

and Pg are linear functions of e. These equations can be solved by
the same trial—and—error procedure that was used to solve equations (LO)
for a, b, and P_,.. If the value of the parameter c¢ (or e) was
different from the trial value assumed at the very outset when the
parameters a and b were determined, then the new value of ¢ (or e)
was substituted In the expressions for the longlitudinal variation of the

buckled shape and the minimization procedure of equation (40) was
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repeated 1n order to get new values for a and b. The process was
continued until the values of all parameters reached reasonably steady
values and the value of P approached a minimum.

This procedure involving separate minimizations for the longitudinal
and circumferential parameters was used because minimization with respect
to all the three parameters at the same time would have yielded nonlinear
equations in the parameters. It was comnsidered more convenient to repeat
the minimizations than to solve the nonlinear equations.

The procedure was carriled out for different numbers of ring and
stringer fields Included in the bulge. The smallest buckling load
obtained in this way was considered the true buckling load.

When the value of P,,. obtained in these calculations differed
materlally from that assumed at the outset, the moments of inertias and
effective shear modulus had to be calculated again and the entire
procedure repeated.

Details of the procedure may be seen from the numerical example
given in the appendix.

COMPARISON OF THEORY AND EXPERTMENT

Numerical calculations were carried out to obtain the buckling
load, for the axlially symmetric deflected shape, of the cylinders shown
in figure 4. The buckling load for the axially antisymmetric deflected
shape was determined only for cylinder T75. Typical deflected shapes of
a ring and stringers are shown in figure 1 and the results of the calcu—
lations are given in table 1. The experimental bending moments at
buckling were taken from reference 1h.

The theoretical buckling loads were conslistently higher than the
experimental values, and the deviations between theory and experiment
seemed to Increase systematically with increase in ring size. Compar—
ison of the theoretical buckling loads for axially symmetric and anti-
symmetric deflected shapes shows that the symmetric shape gave a lower
value but the difference was small. Thils indicates that the assumption
of a symmetric shape was closer to the true deflected shape than the

assumption of'antisymmetry.

The axial wave length predicted by theory was found to be different
from the length of the cutout. .

Comparison of results obtained with the 450 cutout cylinders of
reference 12 with cylinder T2 of this seriles which has rings of the
smallest size shows a decrease in the deviation between theory and
experiment from an average value of 33.9 percent to l8 1 percent. It
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appears that the assumption of a more complex deflected shape incorpo—
rating more free parameters was the cause of this improvement. waeverg
in the case of the heaviest rings, even the present assumptions are not
sufficlently general to give a buckling load in reasonable agreement
wlth experiment.

CONCLUSIONS

A strain—energy theory was developed for the general—instability
buckling load of reinforced circular monocoque cylinders having a long
symmetric cutout on the compression slde and subjected to pure bending.
When the theory wes applied to four test cylinders of the experimental
reports, the buckling loads obtained were 18.1, 26.5, 25.6, and 45.1 per—
cent higher than the experimental values. The &average deviation was
28.8 percent.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., July 12, 1948
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APPENDIX
NUMERICAL EXAMPLE

In this appendix details of the calculations performed in deter—
mining the buckling load for PIBAL cylinder 73 are shown for the case
of a longltudinally symmetric deflected shape. The geometric and
mechanical propertles for this cylinder are:

Sheet thickness, In. « ¢ ¢ o ¢ ¢ ¢ o o ¢ o o ¢ = o« o s = « « . « 0.012
Radius, Iy 3N. ¢ ¢ ¢ o ¢ o o ¢ ¢ ¢ o o o o o o o o o o o o o o« o s s 10
Distance between adjacent rings, Ly, in. . . . .. .. .. .. 3.8
Stringer spacing along circumference, 4, In. . . . . « « . . & 3.927
Nunber of stringers in full portion of cylinder, S . . « « . . . 16
Ingle of cutout, 20, deg .« « < ¢ ¢ ¢ ¢ ¢ ¢ o 4+ o o 4 o o

Stringer cross section, IM. + « « o o o « o « o « o o« « o o 3/8 by 3/8
Area of stringer cross sectﬁon, A, sgin. . . . . . . .. .. O. 1&0232
Torsional rigldity, C, im.* . . . . . . . . . .. . .. .27.686 x1
Ring cross section, in. . « « . « . . 4 . . .. . 1/k by o_g
Moment of inertia of ring cross section, I, in.% . . . T49.36Lk x 1L
Modiilus of elasticity, E, DEL « « « o o o o o o « o « « « . 10.5 x 100
Shear modulus, G =Gg, PS8Ic & v &« ¢ ¢ o ¢ o ¢ o v ¢ o o o . 3.9 X 1

At the outset, the assumed value of P, was taken as 5300 pounds.
The shift of the neutral axis was calculated to be 1.1452 inches on the
basis of a linear force distrlbution for pure bending. This permits the
setting up of the following table which gives the effective width 2w
of sheet to be added to the stringers, the moments of inertia of the
stringer cross sections, the effective shear modulus Ggrp, and the
reduced moduli of elastlcity.



[a = 1.1552; €, = 3.3 X 1074

1y (2) (3) () (5) (e) (1) (8) (5} (10) (1) (12) (13)| (1)
1 ) €A G Agpe | v | Tote, Totry Etan Erad 1 € /%0 |Gare /G0
PR = a0 [N ) DRSO, P T Aanale o n e | A o =t = Y - B -5 o as
0 [3300 [5.088 X 1077|33.5 ¥ 107;0.150611.261|19 X 1077 85.0 X 1077} 9,79 X 10°|10.14 x 10¥|0 + 1/2(29.3 x 107%+| § 0.47T8
1 15198.9(3.999 25,3 1382| 1.46%5(21.76 48.0 10.5 10.5 1+ 1/2|20.4 6.18| .Lko7
2 |ess0,9|2.h29 14.8 1637|1.923|23.32 87.0 10.5 10.5 2+ 1 9.0 2.73| .620
3 | 606.9| .5T8 3.1 .1878| 3.927{23.92 623.0 10.5 10.5 3+ 1f2f--mmnonoees ===~ | 1.000
In this table, column (1) refers to the stringer station. gmn (2) 18 obtained from
equation (26), colum (3), by dividing colum (2) by E = 10.5 X lO psi. Columms (4), (5),

end (6) can be most conveniently filled in through the use of a previously drawn ourve of .

the straln 6 against the area A ep of stringer and effective width combination. {n

curve of this type was used in the present calculations and wae constructed with the ald of
the folloving formula for the effective width:

= (1/e){d/r) {o 3t + 1.535 [(t/d)(er ~ 0. 3'b)rl/2] /3} (A1)
derived in reference 1.)

Colums (7) and (8) give the moments of inertia of the stringers plus their effective
wldth of a curved sheet calculated from the equations:

- (wk {ta+ 02 - [ow2oae]}? 2 1oy 12
Totry = (1/12) + e + 0.8[(2w)2 /2 2wt (a2)

Ietry = (B%/12) + (1/12)(2w)34 (43)

£96T ML VOVN
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where h 1s the width of the stringer.

These equations were also
derived in reference 1. :

If the strain in the stringer is sbove the proportional limit, it
is necessary to use the von Kérmén reduced modulus of elasticity for
calculating the bending rigidity of the stringers. Colums (9) and (10)
glve the values of the reduced moduli based on the curves of
reference 17.

Colum (12) gives the value of the strain in the middle of each

panel from which the effective shear modulus can be determined. On the
basis of a buckling strain of the panels ¢€gp = 3.3 X lO"'ll-, colum (13)
gives the ratio €/esp» for each panel. The values of Ggpp/Go 1n

colum (1k4) are obtained from figure 24 of reference 15.

For the evaluation of the ¢2, M, and R <functions, the number s
of stringer flelds included in the bulge in one~-half the cylinder was
assumed to be four. Ths corresponding value at n can be obtalned
from equation (Al):

n =S/2s (A4)

Oaly integral numbers of stringer filelds were used in ths summations,
so that the angle @ was replaced by its equivalent (2xi/S),

where (2n/S) 1s the angle subtended by one stringer field, and i =
2, 3, . . . denotes the circumferential location of each stringer.
The trigonometric functions appearing in the expressions for &p, &4,
and. ¢r are given in the following table, together with the coeffl-
cients of the trigonometric functioms.

1,

[s =% n=2]
1 Constant| np = ﬂ?i. cos % cos E;E cos BBE sin %1- 8in 2—3’% sin 1:—1-
0 1 0 1 1 1 0 0 0
1 1 0.785398| 0.707107 0 |-0.707107{0.707107 1 0.707107
2 1 1.570796 0 -1 o} 1 0 -1
.3 1 2.356194 [-0. 707107 0 0.707107|0.70710T{ -1 0.7071207
Multiplier 1.6a 0.6a 3.2b 1.8b
for @, = ° 8 1.8 | -0.8a v 3.6 2.4
Multiplier 0.8 0.3b ~0.4a | -0.1la
for o, | ° =051 0.3b | o9 ok | %5 | o5 | o0.133..
Multiplier 12.8b 10.8b ~6.ha ;3.6a
for Qr' 0 0 2.0b ll}oll- lll-o,-l» —2.03. 7.2 ,_'_.8




The polynomial ¢, for 1 = O, for example, 1s obtalned by multiplyling, colum by
colum, the expressions in the row for 1 = 0 by the multipliers for ¢, and adding the

resulting products.

The results for ¢y, &, and o,

are giver In the following table.

Fio)

1 o oy L
0|-1.6 3.2a 0 4.0840705( © 1.6b 90.477868 | © 25.6b
1118,2068803| 0.2828428a| 5.1798996b| —0.7369949|-0.46426ka | 0.1414214b|-21.3946536|—10.3598a ~6.2225416b
2|-4.7398224 | -1,6a | -0.8b ~3.T461647|-0.4a —0.8b —50.0389342| 1.6a —12.8b
3|~5.543958 |-0.2828428a|~1.2201004b| -0.6452392 | -0, 0242642 0. 1414214b| 28.1828808] 2.4402008a| 6.2225416D
R iThe value of M oan be calculated wlth the value of n ; 2 ocorresponding to B8 = 4
an. 8 ‘

M = 73562.5088 + 3487.1679a + 37945.9796b + 805.818682 + 4933.8711b2 + 1151.000ab

R . . Fs N\ rd LY / $ $
The funotions (¢T1 - ¢Ti+l)’(?ti + °t1+l)’ and k¢r1 + °ri+l )
cen be determined by adding or subtracting the polynomials in adjacent rows for each

However, 1t must be remembered that all ¢ Ffunctions are zero
For the values of r = 10 inches

of R

colurm of the above table.
The results are not glven here.

at 1=

and 4 =

I

LS

Q27
s =0

(22)

o
©

1va.
ke ¥ WS 8

\

(45)

needed for the calculation

€96T NI VOVN
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o, = 0.03927
@, = —0.49871 (a6)
a, = —0.003272

Substitution in equation (25) gives the values of R which are listed

in the following tabls..

[op = 0.03927; ay = —0.498T1; o = —0.003272]

i R

0 —0.80694216 0.2842619sa, —0.6423940b
1 1.2486636 0.526935Ta 0.0700127b
2 2.1360358 0.26904896a 0.445T7607b
3 0.5765488 0.0263752a 0.1266206b

The 492, M, and R functions appear in the straln—energy expres—

sions in quadratic form, but the squares of the polynomials are not

given here.

The next step in the calculations is to assume a value of (m + 1),

the number of ring fields involved in the failure. The value chosen
wvas (m + 1) = 10 and the summations appearing in equations (10)

and (23) were evaluated numerically on that basis. These results as
well as the quadratic functions of c¢ appearing in the expressions-
for the strain energy of the stringers and the external work are glven
in the following table.

_ [(m.+ 1) = lO]
Factor for strain
energy of --
Ring bending 3.750 5.468750c | 2.2558595¢2
Stringer bending 1.0 1.875¢ 3.4453125¢2
Stringer torsion | 0.25 0.46875¢ 0.3691406c2
Sheet shear 0.47Th575 | 0.8952328c | 0.6753475¢2
External work 0.25 0.46875¢ 0.3691406c2
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Finally a trial value of the parameter ¢ was chosen. TIn this
numerical example the value of ¢ wused is not the original trial value,
but one which was obtained after several trials. Substituting the
value ¢ = —Ll.4T7T7 in the quadratic functions of ¢ makes it possilble
to evaluate the varlious strain energies in the form of quadratic
oxpressions in a and b for each value of 1.

The quadratic expressions of a and D in.tbg, M, and R are
multiplied by the following factors from equatioms (10), élg) > (15),
7

(18), (23), and (28), which have been multiplied by L/a.o for
convenience of calculatiaon:

For ring bending:
(EIrL/Enr3)(3.750 + 5.46875¢ + 2.255859502) = 9.10990 (A7)
For stringer bending:

(Ene/L)(l.O + 1.875¢ + 3.&453125c2)(18tr1) = 400,399.8Tgy,  (48)
For stringer torsion:; .
(GC/EQ)(0.25 + 0.468T5¢ + 0.3691406¢2) = 39.16829 (89)
For shear of sheet:
' [Go'br‘(m + 1) /KS](Geff'/Go)i(o-)-l»W)-l-575 + 0.8952328¢ + 0.6753&75c2)
= 58,182.6(Gerr/Go )1 1 (£10)
For external work: ‘
(P1/Bor )(0-25 + 0.46875¢ + 0.369140602 ) = 0.362752(P1 /By,)  (Al1)

Multiplication of the 02 > M, end R functions by these multipliers
eand addition of the results make it possible to solve for Pgop:

_ 1,804,446 + 147,812a + 935,431b + 36,451a2 + 23,9608b + 130,546b2
110.0681 + 2.7449ha + 61.82786b + L.2777682 + 8.93153b2 + 1.39202ab

cr

(a12)




28 NACA TN 1963

Differentiation with respect to a and b, respectively, ylelds:

-

_ 147,812 + 23,960b + 72,9028
Cr  2.7449h + 1.39202b + 8.55552a

( (A13)
935,431 + 23,960a + 261.092b

cr © 61.82786 + 1.39202a + 17.86306b |

These equatlions were reduced to two linear equations by assuming a
value of Pgr = 5500 and clsaring fractions. The two linear equations
were solved simmltaneously for a and D:

a = —3.019 (A1)
Al

b = ~3.354 , '
Substitution of these values in equation (Al12) gave a value

of Pcr = 5507 pounds. This result was considered sufficlently close
to the value assumed originally.

‘Phe next step was to substitute these numerical values of a
and b into the $°2, M, and R functions in order to allow a mini—
mization with respect to the paramster c¢. However, the 02 » M, and R
functions happened to have been previously evaluated with a = —3.07
and b = —3.36. Since small changes of the paramesters have little
effect on the buckling load, and since these values are very close to
those given in equations (Alk), the latter values were used.

The numerically evaluated ®2, M, and R functions were then
miltiplied by the remaining factors for the various strain energies
from equations (10), (13), (15), (18), (23), and (28), exclusive of the
quadratic expressions in c¢. This gave as multipliers for the c¢

functions:
-

For ring bending: 161,611.8
For stringer bending: 19,103.99
For stringer torsion: 123,458.2 ¢ (A15)
For shear of shset: 29,527.52

For external work: 136.2066
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Multiplication of .the quadratic expressions In ¢ by these factors and
addition of the results made it possible to solve for Py as &
function of c¢:

_ 671,407 + 1,006,057c + 498,239c°

M6
“F  34.0517 + 63.8468¢c + 50.2794c? (#16)
Differentiation with respect to ¢ as in equation (42a) gives:
_ 1,006,057 + 996,478¢c
For 63.8468 + 100.5588¢c (427)

Assumption of P, = 5440 yields a value of c = —1.4757 from
equation (ALl7). Substitution of this value of ¢ in equation (AL6)
gives Pop = 5446. Since this value of ¢ 1is approximately equal to
the trial value c¢ = —1.477 eassumed at the beginning, the value

of P, obtained is considered the minimm for the number of ring and
stringer fields (s =4, (m + 1) = 10) under consideration.

The entire procedure was repeated for other lntegral numbers of
ring and stringer fields included in the bulge, and the lowest value
of P, was teken as the minimum value, and hence the value corre—
sponding to the buckling load, for the cylinder.

The final results of -the procedure are listed in table 1 for the
four cylirders investlgated. The cylinders are shown in figure L.
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TABLE 1
RESULTS OF CALCULATIONS
Ring fxial Deviatio
. Jol
Cylinder|s|n{T1840% (n 4 1)l & b 1:532; Pop i Mor iiiexgb Mor = Maxp .':OO
in paramster, (1b) |(1n.1b) |(4n.~Ib) . Mexp
cutout o or o (percent) -
S8ymmetric deflected shape
72 L2 9 7 -2.90(=3.30 0.177 {3744 | 251,000 212,500 18.1
T3 W2 9 10 —3,07|—=3.36| -1.476 |s5ik6 | 36L,000| 287,700 26.5
Th k2] 13 U |=3.07[=3.36| —L.463 {6106 L06,000| 323,200 25,6
75 |42 13 10 |-3.07[—3.36) -L.478 |823L]| 542,000} 373,600 45.1
|
Average d.Levia.tion = 28.8 percent
Antisymmetric deflected shape
75 k2| 10 ~3.07|-3.36| —1.173 [8B10| 584,000 373,600 | 56.3

£96T NI VOVM
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(a) Symmetric deflected shape of a stringer.
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(b) Antisymmetric deflected shape of a stringer.
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(c) Deflected shape of a ring.

Figure 1.- Deflected shapes of stringers and a ring, Cylinder 75.
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Figure 2.- Sign convention and deflected shape of cylinder,

Section A-A
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Original panel

Stringer |

Filgurse 3,- Notation and sign convention for shear in a panel.
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Figure 4,- Monocoque test cylinders.
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